17MAT21

Second Semester B.E. Degree Examination, Feb./Mar. 2022 **Engineering Mathematics – II**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a. Solve:
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 2\cos x$$
 by inverse differential operator method. (06 Marks)

b. Solve:
$$(D-2)^2 y = 8(e^{2x})$$
 by inverse differential operator method. (07 Marks)

c. Solve:
$$\frac{d^2y}{dx^2} + y = \tan x$$
 by the method of variation of parameters. (07 Marks)

2 a. Solve:
$$(D^2 - 2D + 5)y = e^{2x}$$
 by inverse differential operator method. (06 Marks)

Solve:
$$y'' + 16y = \sin 3x$$
 by inverse differential operator method. (07 Marks)

c. Solve
$$y'' - 5y' + 6y = e^{3x} + x$$
 by the method of undertermined coefficients. (07 Marks)

3 a. Solve:
$$(2x+1)^2y'' - 6(2x+1)y' + 16y = 8(2x+1)^2$$
 (06 Marks)

b. Solve:
$$p^2 - 7p + 10 = 0$$
. (07 Marks)

4 a. Solve:
$$x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 8y = 65 \cos(\log x)$$
 (06 Marks)

b. Solve:
$$x^2p^2 + xyp - 6y^2 = 0$$
 (07 Marks)
c. Solve: $p^2 + 2py \cot x - y^2 = 0$ (07 Marks)

c. Solve:
$$p^2 + 2py \cot x - y^2 = 0$$
 (07 Marks)

Module-3

- Form the partial differential equation by eliminating the arbitrary function from z = f
 - b. Solve: $\frac{\partial^2 z}{\partial x^2}$ = xy subject to the conditions that $\frac{\partial z}{\partial x} = \log(1+y)$ when x = 1 and z = 0 when x = 0. (Use direct integration method).
 - Obtain the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables for the positive constant. (07 Marks)

OR

- Form the partial differential equation by eliminating arbitrary function from $\phi(x + y + z, x^2 + y^2 - z^2) = 0$ (06 Marks)
 - Derive one dimensional wave equation in the form (07 Marks)
 - c. Solve: $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that when x = 0, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$. (07 Marks)

Module

- a. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{y} e^{x+y+z} dxdydz$ (06 Marks)
 - b. Evaluate $\int_{1}^{1} \int_{1}^{\sqrt{1-x^2}} y^2 dxdy$ by changing the order of integration. (07 Marks)
 - Derive the relation between beta and gamma function as $\beta(m,n) = \frac{|m|}{n}$. (07 Marks)

- (06 Marks)
 - Find the area bounded between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ using double integration. (07 Marks)
 - Evaluate $\int x^{3/2} (1-x)^{1/2} dx$ using beta and gamma functions. (07 Marks)

Find the Laplace transform of 9

$$2^{t} + \frac{\cos 2t - \cos 3t}{t}$$

(06 Marks)

- b. Given $f(t) = \begin{cases} E, & 0 < t < a/2 \\ -E, & a/2 < t < a \end{cases}$ where f(t+a) = f(t), show that $L\{f(t)\} = \frac{E}{S} \tanh\left(\frac{as}{4}\right)$. (07 Marks)
- c. Find the Inverse Laplace transform of $\frac{s^2}{(s^2 + a^2)^2}$ using convolution theorem. (07 Marks)

- (06 Marks)
 - cost, $0 < t \le \pi$ $\pi < t \le 2\pi$ into unit step function hence find its Laplace Express the function f(t)sin t, $t > 2\pi$

(07 Marks) transform.

 $y = e^{t}$ given y(0) = y'(0) = 0 using Laplace transform. (07 Marks)

2 of 2